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We consider a plane vertical layer of VISCOUS lncompresrfble liquid, enclosed 
between two Infinite, uniformly heated planea. It is well krown that for 
arbitrarily small temperature difference .between the planes convective motion 
of the liquid Commences. The stability of the given motion W~II rtudled ln 
[I and 21, where the behavllor of neutral perturbstlonr was conaldered and it 
was shown that the critical point of steady motion Ir caured by monotonous 
and oscillatory Perturb&lone at co~aratlvely small values of the Orasshdf 
number. GaleskIn’ method wan applied to the study of the st8billty. The 
eolutions conelrrited of linear combiMtlOn8 of basic funotlons whloh were. 
pol omlale fiatiefylng the boundary oondltlona. A better result was obtained 
in 23, where four baalc functions were chosen for approximation of the per- r 
turbatlona : two for the stream function and two for the temperature. 

In the pre lent paper we study the behavior of the normal perturbations In 
the liquid at rest and In-the conveotlve flow for a small temperature dlfrer- 
ence between the planes. The perturbatlone and their decrements are expanded 
In series with respect to a small parameter, the Orasahof number, and the 
usual method of the theory of perturbations ia used to determine the elgen- 
functions and the spectrum of the decrements taking into aOoO?.mt second order 
corrections. We study the dependenoe of the .spectrum of the Randtl number 
P and It turns out that when Pa 1 It pasres over into the 6pectrum’or the 
Isothermal problem 133. To establish the aharaater of the Interseotion of 
the level8 we use aalerkln’e. method In the appro%lMtIon of four bmlc funo- 
tlone. The spectra of the dearemsnts obtaIned by thI8 method make It porsi- 
ble aleo to trace the onset of monotonous instabllJty in a rather wide Inter- 
val of the Prandtl number, 

1, In an infinite vertical channel of width 2L with a oonstant tempe- 
rature difference 20 between the Walls, a steady 
motion is eet with profiles of dlmenrionlers velocity 
v(J = ‘/fi (29 - i) and dimensionless ter@erature TO= --se 
The.dlrectlon of the axe6 la shown ln Fig.1. 

Let ua consider amall plane perturbations of the 
velocity u (t, z, t) and of the -temperature .6 (2, z,.i) 
The perturbation stream function Y’ (s. Z, t) la Intro: 
duced by the relatlona u = - dY / dz, u = 
From the usual equatlons*of free convectton ‘t’ 

Y / dx. 
43 we 

obtain for emall plane perturbations the boundary 
problem 
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Here 0 Is the, Orasehof number; P 18 the Prandtl number; v is the 
klnenmtlc vlecoslty; 4 Is the acceleration of free fall; B la the coef- 
flclent of thermal expanrlon. The equations are written In dlmenslonless 
variables. For units of distance, time temperature and velocity we have 
taken the respective quantltlee L , Ld/v , e and o~eL'/v . 

We shall consider normal perturbations of the form 

Y (2, 2, t) z CD (t) e- (Af+ikz), fb (z, z, ‘) = T (5) e- (‘bL+iKr) 11.2) 

Here k la the real POOltlVe wave numb@r, X le the complex decrement, 
the real part of whloh oharacterlzes the rate of growth (deaay) OS the per- 
turb&lonr, and the wlnary part their phase velocity. After eubatltutlon 
of (1.2) In (1.1) we obtain the equations for the amplitude of the perturba- 
tiona A’W + 3LAO + T’ = aH@‘, f AT + hT = - a (v,T + @) 

0 (& 1) = cb’ (f 1) = T (f 1) = 0 
a 

A=- -kz, H0 = ~~“0 - vOA@, a= ikG (1.3) 
Here primes denote dlfferentlatlon with respeot to x . 

P, For a small temperature dlfferenoe between the walle, i.e. for small 
value6 of the parameter 0 , the method o? perturbation theory can be ueed 
to detrrmlne the speotrwn of the eigenvalues A and the elgenfunctlona of 
the boundary problem (1.3). We expand the a&ltudes of the perturbation 
and the decrements X In powers of the r&l1 parameter a 

CD = (D(O) + n@(l) + ,2@(a) + . . .) 

h = a(O) + &W $ 

In the expansion of the decrement X 

T = T(O) + aT@) + c$T(~) + . . . 

. . . (21) 

only the even powers of a are 
0 - Is replaoeh by - 0 foI; odd 

temperature TO (a similar aituatlon 
of l~othermal flows with odd pro- 

retaIned, slncc A does not change when 
unperturbed proflles of veloolty ug and 
exists alro ln the oaee of perturbations 
files [33) . Subetitutlng the expqmlont. (2.1) in the amplitude equations 
(1.3) and reparatlng the terms with the parameter o raised to the zeroth 
power, first power, second power and 80 on, we obtain the equations of auc- 
oeraive approximstlons 

APQ)(o) + h(O) &J,(o) + T(o)’ = 0, JJ-‘AT(O) + a(o) T(o) = 0 (2.2) 
A-1’) + ato) A@(l) + ~(1)’ = H@(O), p-1 AT(‘) + ~(0) T(l) = _ VOW _ ~(0) (2.3) 

A%@ + h(o) A@@) + T(2)’ zzz f-@,(l) _ h(2) A,@) 

plA’J’(2) + k(o) T(2) = _ @(1) _ Q(l) _ k(2) T(o) (2.4) 

The boundary oondltlona follow from (1.3) 

Q,(n) (f 1) = W)’ (f 1) = T(n) (f 1) = 0 (2.5) 
3. The equationa of the zero order approximation (2.2) describe the per- 

turbations when 0 - 0 , I.e. for uniform temperature planes. The i3tructure 
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of the equations enables one to dlstlngulah two types of perturbations: I) 
laothermal, for which T(“) -= 0. and 2) nonlsothermal, corresponding to TCO’ + 0. 

For the amplitudes and decrements of the Isothermal perturbations we have 

AZ@) + p.(o) :\y’O! = 0, qj(O) (+ 1) : fp (t_ 1) = 0 (3.1) - 

Equation (3.1) shows the spectra of the elgenfunctlons to be defined by 
the property evenness with a discrete spectrum of elgenvalues pin). The nor- 
malized even solutions have the form 

@O) = cc:+ 
wsh -, t CO), 

_ -~__- 
1 

cash 4 i(O) 
(i z n, 2, 4, , .) (rice)* = k’- pi(‘) < 0) (3.2) 

The elgenvalues p’!uj 1 are found from the characteristic equatlon 

ktanhf; - $kmh;fn) =- 0 2 1 (i = 0, 2, 4, . . .) (3.3) 

If In (3.2) we replace cash by slnh and in (3.3) tanh by coth , 
then we obtain the odd solutions ‘pi’) with the spectrum py) (i = 1, 3, 5, . . .). 

All decrements @) are real and positive [3]. 
. 

They do not depend on the Prandtl number and are determined solely by the 
wave number k . For all k the decrements increase In the sequence (0) 
@, p (0) 1 . . . The elgenfunctlons satlsfy the condltlon of orthogonallty PO ' 

I 

I 
(F,.(O'A~ i k 

(0)&T F@ (i # 4 (3.4) 

-1 
Nonlsothermal perturbations are described by the system of equations 

Aj2@) $ .\.W)J(~‘O) __ j+O)‘__ 0, p-1 AT(“) [ ,,UO~(O) = 0 __ (3.j) 

with boundary conditions (2.5). 
perturbations of temperature 

The spectrum of the decrements Yi 
IO\ and the 

conduction (3.5) 
Tl”) 1s determined from the equation of heat 

$) 
1 -. p-1 [‘,‘$? (i + 1y -j- k:] (i =- 0, 1, 2, . . .) 

3’.((‘) = 
{ 

cos pyz (i ==o, 2, 4,. . .) 
t 

sin pi(O)c 

p .cni2 = 
(i=1,3, S,...) ’ 

p\p - ii’ > 0 (3.6) 

The perturbations of temperature are orthogonal 
1 

5 
T p Tkco)& = 0 (i+ k) 

-1 

(3.7) 

Because of the presence of convective forces the temperature perturbations 
lead to the occurrence of velocity perturbations. 
city perturbations q)!O) 

The amplitudes of the velo- 

given by Formulas (3!6). 
are found from (3.5) with known y!O) and v!O) 

Even perturbations of temperature’correspok’ld to 
the odd functions q$J) (i 0, 2, ‘1, . . .) (3.8) 

If in (3.8) we make the substitution Bin s cos and slnh = coeh then 
we obtain the even functions C&P) (i = 1, 3, 5 . . J, corresponding to the’odd 
perturbations of temperature. 

Thue, In fluid at rest there occur monotonously decaying perturbations of 
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,two types: isothermal, the spectrum of the decrements of which does not 
depend on the Prandtl number, and nonisothermal, the decrements of which 
decrease as the Prandtl number grows, proportionally to l/P . When P - 1 

an:, Isothermal levels alternate in the spectrum In 
‘, VP’, pi)‘, . . .(Pig.2c, C - 0) . With the decrease 
3’ there occurs a rareflcatlon or concentration 

of the spectrum of v-levels for the fixed position of the u-levels. 

Thus, when Pa 1 the lower part of the spectrum is formed by the lso- 
thermal levels and when PU 1 I the lower levels are nonisothermal (Pig. 
2 b, d i 0 = 0). 

4. Let us study the behavlor of perturbations In tne moving fluid for s 
amall d;ifference of temperature bexween tne planes. The corrections to ‘the 
eigenfunctlona of the zero order approximation will be sought In the form of 
expansions with respect to the complete system of functions (Tp’j and {cpj”‘} 

Tic”) = x aiJm’T*(*), up 1- x $%pk(~) (4.1) 
Ii Ii 

We shall Indicate the coeffiolents of the expansions (4.1), necessary for 
the calculation of the second order corrections of the “Isothermal” and “non- 
Isothermal” perturbations: n!s’ and vi*’ 

To find pi,” It la necea&y to know I’!“. CD!” and II’!“‘. The corresponding 
coefflclents of the expansion are found by’the fisual method from the equa- 
tions of the succeaelve approximations (2.3), (2.4) 

Here we have Introduced the following notation for the matrix elements: 

(4.3) 

Integration everywhere Is within the range from - 1 to 1 . The coef- 
flClt?ntS a!?) are equal to zero, which follows from the condition of nOFmalCY 
In the cauf’of the odd unperturbed velocity profile. 

For the second order corrections pi2’ we obtain Formula 

Similar formulas are obtalned also for “nonisothermal” perturbations 

b,jp’ = - 



9~11 pcrturbatlona of convective fnotlon 443 

where a(1) = 0 from the condition of normalcy, and all the matrix elements 
are de&nlned by Formulas (4.3). Explicit exprqlreions for the matrix ele- 
ments are cumbersome and are not presented here. 

Summation 18 carried out with respect to the unperturbed v- and v-levels. 
Thene aum8 In the corrections to the given level characterize lta Interaction 
with the Isothermal and nonlsothermal level8 respectively. 

Fig. 2 

Jn the llmltlng case with P - 0 the decrements v!‘) + 00 and the correc- 
tions to the “Isothermal” 

P 
erturbatlons and their dec#ementa pas8 over to the 

corresponding formulae of 33 (for the case of the odd profile) 

Formulas (2.1) and (4.1) to (4.6) enable one to find the spectrum of the 
decrements and the elgenfunctlone of the perturbations for am~ll Waeshof 
numbers. 

Fo? deflnlte values of the parametre P and k It can happen that ‘dege- 
neracy” occur@ in the unperturbed spectrum, i.e. coincidence of the decre- 
ments of the IeothkYnal and nonisothermal perturba+.lone, y!O) = $). The cor- 
rections to such a degenerate level cannot be found by me&a of r;he expan- 
sions considered; aa Is clear from the formulae presented, they lose slgni- 
ficance in the case of degeneracy. 

5. The second order correction8 to the decrements were computed on the 
“ARAOATS” computer ln the approximation of 24 (12 + 12) basic functions. 
Fig. 2 shows the spectra of the decrements taking Into account the iecond 
or?cr corrections with k - 1 . The contlnuoue lines Indicate the laother- 
iTal” levels, and the dashed lines the “nonleothermal” (*). 

l ) Here one should stress the conventionality of the term “isothermal” 
level, since with G f 0 this level corresponds to a nonzero perturbation 
of temperature (See (4.2) ) . 
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For small values of Prandtl number p (Pig.2 a, b) the lower part of the 
spectrum 1s occupied by levels of “Isothermal” perturbations. “Nonlsotner- 
mal” perturbations exert on them an inslgniffcant influence. Pormally this 
Is expressed by the fact that the sums with respect to the u-levels in For- 
mula (4.4) give small contributions to the correction to the ~-levels. In 

essence, the k(?) is determlned for small P only by 
the first swn’ih the right-hand side; this sum desarlbes 
the interaction of the tth level with the other iso- 
thermal levels. The ape&rum in Fig,2a almost coinaides 
with the spectrum of the hydrodynamfc problem with a 
glven steady velocity profile 133. 

With Increase of Randtl number P the form of the 
spectrum changes slgniffaantly (Fig.2 c, df. When P-1 
the levels of different type alternate in the spectrum, 
SO the mutual interaction of the “Isothermal” and the 

0.5 1.5 “nonisothermal” perturbations here begins to be deter- 
minative l In Fig.Bc it is clear that with increase of 

Fig. 3 # the stability of the “ieothermal” perturbations 
decreases, whilst that of the “nonisothermal” lncmaaes. 

For large values of number P (Plg.2d) “nonisothermal” levels are located 
in the lower part of the spectrum. In contrast to the case of’ small values 
of P , a signlflcant Influence on the behavior of’ th,e lower levels is exerted 
by the levels of the other type, i.e. the “Isothermal ones. l’hl+! is easy to 
establish from the formula for the second order correotions q(” (4.6), 
where the sums ,with respect to the p-levels remain substantial for large p 
as well. 

In the case of small values of P (Fig.2 a, b) the lower “lsothermal”leve1 
can be extended to the lntersectlon with the O-axle, The point of intersec- 
tion ensbfas us to ftid approximately the Glrasshof number for the neutral 
perturbation with a given value of k . In Fig.3 we show the neutral curves 
obtained In thle nay for different values of the number P . The critical 
Orasshof numbers are close to those obtained ln 123, 

6, The expansions we have considered do not enable us to study the inter- 
section in the spectrum of perturbatione’; moreover, as indicated, the expan- 
sions lose their meaning, when Uegeneraay ocaura in the unperturbed spectrum. 
To elucidate the ohansotar of the speotrum in these cases we can employ Ualer- 
kin’s method, and as basic fun&ions Q@) and T&?. are convenient. 
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The approxhatlon 
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a = c,cpo(O) + c,q$O) 9 
T = doTdo) + d,T,(‘) 

givea the exact values of the four deorementa 
a-o. 

PO(O), pllo), vi*) and vIto) when 
When 0 # 0 we obtain from the approximate eolution et leaet a 

qualitative picture of the Intersection OS Sour levels considered. 

Fig.4 shows the spectra of the decrements obtained in the approxlmatlon 
(6.1) for wave number k - 1 and certain values of the Prandtl number in 
the Interval 0.14 5 P s 1.26 (in this interval the Intersecting levela are 
lower ln the spectrum) . With Increase of number P the distribution OS 
level8 ehangea, and for -certain values of P degeneracy occurs. Sor the 
unperturbed- .@)_ and u(O1- levels. Fig.4 shows the real- CI- and vleVel8, 
starting from the axis 0 I 0 , Indicated by full and dashed curves, reapeo- 
tlVely.- At the confluence of the real leveirr a pair of complex conjugate 
dewements la formed, describing oscillatory perturbations. The oonanon real 
part of thoee deorementa le depicted by chain-dotted curves. 

Aa Is olear from Fig.4, the spectrum does not show "almple" lntereectione 
of real levels. The confluence of real levels leads to the formation of 
certain arltical values of 0 of a pair of complex?conjugate decrements. 
Moreover, at the Intersection of p- and v-levels it ia poealble alao to 
have e caoe of “splitting” of a complex conjugate pair Into two real level6 
a6 the parameter 0 achieves e second critical value (Fig.4 o,d,e). Special 
points of thle sort do not ooour ln spectra of perturbatlone of isothermal 
Slows; apparently they are specific to convective problems. In Flg.4d one 
ctlll Bee how two secondary real levels again combine, forming a pair of oacll- 
latory perturbations. 

Degeneracy of the unperturbed spectrum corresponds to valuea of the para- 

From Fig.4 It I.8 clear that in the Interval of values OS the Prandtl num- 
ber P under consideration there Is monotonous Instability; moreover, Its 
onset is oonnected with *laothermal* perturbations; the axis of 0 is lnter- 
aected either by a real u-level, or by one OS the real levels formed by 
“decomposition”- OS a oompiex oonjugete‘ pair. It Is interesting that although 
for a ohange of the number P ln the Interval of P under consideration 
the epeotr&n ohange8 Sorm rather radically, the crltlcal value of the Crass- 
hof number, whloh determines the neutral perturbation, varies only slightly. 

The author thanks C.E. Qershunl for posing the problem end for help with 
the paper. 
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