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We consider a plane vertical layer of viscous incompressible 1iquid, enclosed
between two infinite uniformly heated planes. It is well known that for
arbitrarily small temperature difference between the planes convective motion
of the 1liquid commences. The stability of the given motion was studied in

[1 and 2], where the behavior of neutral perturbations was considered and it
was shown that the critical point of steady motion is caused by monotoncus
and oscillatory perturbations at comparatively small values of the Grasshof
number. Galerkin's method was applied to the study of the stability. The
solutions ceneslsited of linear combinations of dbasic funotions which were:
polynomials satisfying the boundary conditions, A better result was obtained
in [ 2], where four basic functions were chosen for approximation of the per-
turbations: two for the stream function and two for the temperature.

In the preient paper we study the behavior of the normal perturbations in
the liquid at rest and in-the convective flow for a small temperature differ-
ence between the planes. The perturbations and their decrements are expanded
in series with respect to & small parameter, the Grasshof Number, and the
usual method of the theory of perturbations is used to determine the eigen-
functions and the spectrum of the decremente taking into account second order
corrections, We study the dependence of the spectrum of the Prandtl number
P and it turns out that when P« 1 it passes over into the spectrum of the
isothermal problem [3]. To eatablish the character of the intersection of
the levels we use Galerkin's. method in the approximation of four basic func-
tions. The spectra of the decrements obtained by this method make it possi-
ble also to trace the onset of monotonous instability in a rather wide inter-
val of the Prandtl number.

1. In an infinite vertical channel of width 2L with a constant tempe-
rature difference 29 between the walls, a steady
4 motion is set with profiles of dimensionless velocity
U vy = /4 (z* — z) and dimensionless temperature Ty=-—x,
¢ The -direction of the axes is shown in PFig.l.

Let ua consider small plane perturbations of the
velocity u(z, z, ) and of the temperature @ (z,z,1) .
The perturbation stream function ¥ (z, z,¢) 1s intro-
duced by the relations u = — d¥ /dz, u, = d¥ /dz.
From the usual equations®of free convection L4] we
obtain for small plane perturbations the boundary
problem
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Fig. 1
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Here (¢ 1s the Grasshof number; F 1is the Prandtl number; v 1s the
kinematic viscosity; ¢ 1is the acceleration of free fall; g 1is the coef-
ficient of thermal expansion. The equations are written in dimensionless
variables. Por units of dista.nce, time‘ temperature and velocity we have
taken the respective quantities , I8/y , 8 and ggel3/y

We shall consider normal perturbations of the form
¥ (2, z,2) = O (z) e AHHikD, O (2, 2,t) =T (z) e~ PHHiED) (1.2)

Here X 18 the real positive wave number, A is the complex decrement,
the real part of which characteriges the rate of growth (decay) of the per-
turbations, and the imaginary part their phase velocity. After substitution
of (1.2) in (1.1) we obtain the equations for the amplitude of the perturba-

tions A2 + AAD + T = aH(D,% AT + AT = — o (5,7 + D)
()= (L1)=T(£1)=0
a
A=F — k2, HO=p,"O —2,A®, a= ikG (1.3)

Here primes denote differentiation with respect to x .

#. For a small temperature difference between the walls, i.e. for small
values of the parameter a , the method of perturbation theory can be used
to determine the spectrum of the eigenvalues ) and the eigenfunctions of
the boundary problem (1.3). We expand the amplitudes of the perturbation
and the decrements )\ in powers of the small parameter a

O = OO 4 200 + 20@ 4 ., T = TO 4 o7M 4 27® 4 |,
A= A0 g ® (2.1)

In the expansion of the decrement A only the even powers of 4 are
retained, since A does not change when a4 1is replaced by - a for odd
unperturbed profiles of velocity U, and temperature 7, (a similar situation
exists also in the case of perturbations of isothermal flows with odd pro-
files [3]). Substituting the expansions (2.1) in the amplitude eguations
(1.3) and separating the terms with the parameter g raised to the zeroth
power, first power, second power and so on, we obtain the equations of suc-
cessive approximations

ADO 4 QD AQO  TOY =,  PIATO® 4 RO O = ¢ (2.2)

AW + A0 ADD 4 T = OO, PAIATO £ 30 1) — 5 70 __ @ (2 3)
AD® - A@ AQ® L T — go® _ 7@ A@®

PAIAT® - 30 7@ = __ 571 _ @) _ 3, 7O (2.4)

The boundary conditions follow from (1.3)

O (1) = O™ (1) =T (£ 1) =0 .5)

3. The equations of the gero order approximation (2.2) describe the per-
turbations when @ = 0 , i.e. for uniform temperature planes. The structure
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of the equations enables one to distinguish two types of perturbations: 011)
isothermal, for which 7" := (,and 2) nonisothermal, corresponding to 7Y = 0.

For the amplitudes and decrements of the 1sothermal perturbations we have
A%® +p@ 3¢ = 0, ¢ (+ 1) ¢ (1) =0 (3.1)

Equation (3.1) shows the spectra of the elgenfunctions to be defined by
the property evenness with a discrete spectrum of eigenvalues p(“). The nor-
malized even solutions have the form !

< (0
(o) __ cosh kx cosh o

Pi coshk o E‘(m
t

x

(=0,2,4, ..) (5P=r—p9<0) (3.2

1

The eigenvalues pl(“" are found from the characteristic equation
krannf: — EMwanl® = 0 (1==0,2,4,..) (3.3)
If in (3.2) we replace cosh by, sinh and in (3.3) tanh by coth ,
then we obtaln the odd solutions (pi“" with the spectrum pg‘” (i=1,3,5,...).
All decrements ”(7.0) are real and positive [3]. :
They do not depend on the Prandtl number and are determined solely by the

wave number % . For all & the decrements increase in the sequence “gt)),

P§0)~P510)--- The eigenfunctions satisfy the condition of orthogonality
- 1

5 ¢. 080, Vdz =0 (k) (3.4)
—1
Nonlsothermal perturbations are described by the system of equations
A2D® 4 O @ 7O g PIATO - A OO = ¢ (3.5)
wlth boundary conditions (2.5). The spectrum of the decrements V;'“ and the
perturbations of temperature 7T) 1s determined from the equation of heat
conduction (3.5) i

v%“’ = Pl [U,n? (i -+ 1)2 Rl (i=0,1,2,...)

(0} P —0. 9
cospVz  (1=0,2,4,...) " .
T, ={ v p, W = Pyl — i >0 (3.6)

sinpPr  (i=1,3,5,...)

The perturbations of temperature are orthogonal
1

3 7,07, gz =0 (i< k) G.7)

—1
Because of the presence of convective forces the temperature perturbations
lead to the occurrence of velocity perturbations. The amplitudes of the velo-

city perturbations /)  are found from (3.5) with known 7() and {0
given by Formulas (3.6). Even perturbations of temperature ‘correspoid to

the odd functions q,gm (i-:0,2,4,...) (3.8)
OO (—1 )iP;(O) sin Pi(m (]im)wshqim)ﬁhkr — kcoshk linhqi(o)x sin pi(o)x
E Y7 TS hooshisiang, ) — 91(0) sinb coshg ") T ein p1_.(0) (P 1)

t r ( l)l ) . <
0 — . .
CDl.( ) = 2;{"‘_‘7 ].’f ok (pz.(“’ cin pi“’)m kr — pi(“) sinhk sin pi‘o) ) -i- & Co8 pi(o)xJ (P=1)

(rhgo)z =12 vgn))

If in (3.8) we make the substitution sin = cos and sinh = cosh , then
we obtain the even functions ‘D:(o) (i=1,3,5...), corresponding to the odd
perturbations of temperature.

Thus, in fluid at rest there occur monotonously decaying perturbations of

’
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two types: 1isothermael, the spectrum of the decrements of which does not
depend on the Prandtl number, and nonisothermal, the decrements of which
decrease as the Prandtl number grows, proportionally to 1/P . When P =1
(x # 0), nonj(aothermal and 1snthe}~“mal levels alternate in the gpectrum in
the order (o) y {0 "y (0 (0 O 4 ). . (Pig.2¢c, G = 0) . With the decrease
or increase or thHe number 2P “there occurs a rarefication or concentration
of the spectrum of v~levels for the fixed position of the u-levels.

Thus, when P <« 1 the lower part of the spectrum 1s formed by the iso-
thermal levels)and when P> 1 , the lower levels are nonisothermal (Fig.
2 bl d H C= 0 .

4, Let us study the behavior of perturbations in tne moving fluld for a
small difference of temperature between tne planes. The corrections to the
eigenfunctions of the zero order approximation will be sought in the form of
expansions with respect to the complete system of functions {T;")} and {q;z!")}

T =¥ a,M7,©, ;™ =3 M, (4.1)
K k

We shall indicate the coefficlents of the expansions (4.1), necﬁssary"ror
the calculation of the second order corrections of the "isothermal” and "non-
isothermal” perturbations: u{®) and +{?

To rind ¥ 1t 18 necessary to know 7!, ®{V) and 7{*. The corresponding
coefficients of the expansion are found by the usual method from the equa-
tions of the successive approximations (2.3), (2.%) p

.2)

pil) — _ 1

m_ i o CuDne
KT o) W= [+ 3 )
p‘i(O) - vk(o) ' p’i(O) - P,k(o) Zil P‘i(O) — V1(0>

@) _ 1 CuBi Q Cx CiiDpmy
Q' = [ : — — A (Hmi+ e ]
pi(o)_ vk(o) 21 pi(o)___vl(o) m}:ﬁi p‘i(O)""l‘"m(O)' 21: P‘i(o)'_"z(u) J

Here we have introduced the following notation for the matrix elements:

1 ¢ 1 ¢ ’
Hopn = T S ¢, OHe, Odx, Dy == T 5 T, 9, Vdx
LI O LI
Con = _Y; B Ty, Pn dr, Binn = Tn-s Tm( )UDTH(O)dz (4.3)
I = 5-(pm(°)AqJ:n(°)dx, Y :S T,. %4

Integration everywhere is within the range from — 1 to 1 . The coef-
ficlents b(l.) are equal to zero, which follows from the condition of normalcy
in the casd ‘of the odd unperturbed velocity profile.

For the second order corrections “1(2) we obtain Formula

H; H._; H; .CriDpm + HpiDpiC
(2 = ___1!!3_&1..__}_ imUninm miZnilnm
ot Z Hiw)“p‘m(o) Z 2 mi(o)_ ”m(o)) (”iw)_ "n(o))

mAi ms=i n

DyiCyi NY ComDim
LAY nesit Bn — ——— s (4.4)
%’; @7 = v @Y =) ( " %i "’i(o)_}‘m(o)>

Similar formulas are obtalned also for "nonisothermal" perturbations

Diy 1 DiuCp
b0 = ———, gV = w___“(__ Byi+ D ~) (4.5)
ik vi(ﬂ) — }“k(o) ’ ik 'Vi(O) — .\,R(OJ t 12 Vi(o) — p.1(0)

1 DyH,,y D D;,C
g, (1) k S\ mk ilmi
by = [2 + 2 © ( Bni + Z (0 (o)-l
14 4 1 =

oy A0 (0) 0 __,, (0 (0 _
Vi By T Vi My i i v iy
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where q?$== 0 from the conditicn of normaley, and all the matrix elements
are determined by Formulas (4.3). Explicit expressions for the matrix ele-
ments are cumbersome and are not preaented here.’

Summation is carried out with respect to the unperturbed u~ and v-levels.
These sums in the corrections to the given level characterize its interaction
with the isothermal and nonisothermal levels respectively.
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Fig. 2

In the limiting case with P - O the decrements v _, 5o and the correc-
tions to the "isothermal Ferturbations and theilr dectements pass over to the
corresponding formulas of [3] (for the case of the odd profile)

Formulas (2.1) and (4.1) to (4.6) enable one to find the spectrum of the
decrements and the eigenfunctions of the perturbations for small Grasshof
numbers.

For definite values of the parametrs P and & 1t can happen that "dege-
neracy” occure in the unperturbed spectrum, i.e. coincidence of the decre-
ments of the isothermal and nonisothermal perturba*ions, v{" ::pml The cor-
rections to such a degenerate level cannot be found by meahs of the expan-
sions considered; as is clear from the formulas presented, they lose signi-
ficance in the case of degencracy.

" 8. The second order corrections to the decrements were computed on the

ARAGATS" computer in the approximation of 2% (12 + 12) basic functions.
Fig. 2 shows the spectra of the decrements taking into account the second
order corrections with % = 1 . The continuous lines indicate the "isother-
721" levels, and the dashed lines the "nonisothermal” (*).

») . Here one should stress the conventionality of the term "isothermal”
level, since with ¢ # O this level corresponds to a nonzero perturbation
of temperature (See (%.2)).



44y R. K. Rudakov

For small values of Prandtl numper P (Fig.2 a, b) the lower part of the
spectrum ie occupied by levels of "isothermal” perturbations "Nonisother-
mal” perturbations exert on them an insignificant influence. Formally this
i1s expressed by the fact that the sums with respect to the v-levels in For-
mula {4.4) give small contridutions to the correction to the u-levels. In
essence, the ,L&) is determined for small P only by
G 1 the first sum 1ih the right-hand side; this sum desecribes
% P=Q0! the interaction of the t¢th level with the other iso-
a7 thermal levels, The spectrum in Fig.2s almost coincides
0.2 with the spectrum of the hydrodynamic problem with &

250 | given steady velocity profile [3].

\» / With increase of Prandtl numder P the form of the
spectrum changes signifiocantly (Pig.2 ¢, d). When P=1

N~ the levels of different type alternate in the speetrum,

250 K 8o the mutual interaction of the "isothermal” and the

a3 15 75 ‘“"nonisothermal” perturbations here begins to be deter=

’ minative, In Pig.Z2c it 15 clear that with increase of

Fig. 3 ¢ the stability of the 1sotherma1 perturbations
decreases, whilst that of the "nonisothermal” increases.

For large values of number P (Fig.2d) "nonisothermal” levels are located
in the lower part of the spectrum. In contrast to the case of small values
of P , a significant influence on the behavior of the lower levels is exerted
by the levels of the other type, 1.e. the "4sothermal” ones. %a is easy to
establish from the formula for the second order corrections v 6),
where the sums with respect to the up~-levels remaln substantial ror large P
as well.

In the case of small values of P (Fig.2 &, b) the lower “isothermal”level
can be extended to the intersection with the #-axis, The point of intersec-
tion enables us to find approximately the Grasshof number for the neutral
perturbation with a given value of % . In Fig.3 we show the neutral curves
obtained in this way for different values of the number P . The critical
Grasshof numbers are close to those obtained in [2].

6§, The expansions we have considered do not enable us to study the inter-
section in the spectrum of perturbations; moreover, as indicated, the expan~
sions lose their meaning, when degeneracy occurs in the unperturbed spectrum,
To eluoidate the charecter of the spectrum in these cases we c¢an employ Galer-
kin's method, and as basic functions ¢!® and 70 are convenient.
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The approximation
@ = ¢90'? + ¢,¢,?, T = 4,7, + 4,1, (6.1)

gives the exact values of the four decrements 1,(®, 1@ v,® and %@ when
G =0, When ¢ # O we obtain from the approximate solution at least a

qualitative picture of the intersection of four levels considered.

~ Fig.4 shows the spectra of the decrements obtained in the approximation
(6.1) for wave number * = 1 and certain values of the Prandtl number in
the interval O0.14 s P < 1,26 (in this interval the intersecting levels are
lower in the spectrum). With increase of number P the distribution of
levels changes, and for certain values of P degeneracy occurs for the
unperturbed (0. and u!?- levels, Fig.4 shows the real u- and v-levels,
starting from the axis @ = 0 , indicated by full and dashed curves, respec-
tively. At the confluence of the real levels a pailr of complex conjugate
decrements is formed, describing oscillatory perturbations. The common real
part of those decrements is deplcted by chain-dotted curves.

As is clear from Fig.4, the spectrum does not show "simple” intersections
of real levels, The confluence of real levels leads to the formation of
certain critical values of (¢ of a palr of complex-conjugate decrements.
Moreover, at thg intersection of u- and y-levels it is possible alsoc to
have a case of "splitting" of a complex conjugate pair into two real levels
as the parameter (¢ achleves a second critical value (Fig.% c¢,d,e). Speclal
points of this sort do not occur in spectra of perturbations of 1sothermal
flows; apparently they are specific to convective problems. In Fig.4d one
can see how two secondary real levels again combine, forming & pair of oscil-
latory perturbations.

Degeneracy of the unperturbed spectrum corresponds to values of the para-
meters for which specia% points occ on the axis & = 0 . 80, in the three
cases of degeneracy (u,\% = v, § @=y @ 5 @@=y ) the pair of complex-
conjugate decffments arises for an arbit%ari y small value of ¢ . In the
case (0 = v, the degenerate level for arbitrarily small ¢ splits into
two real ones.

Prom Fig.4 it is clear that in the interval of values of the Prandtl num-
ber P under consideration there 1g monotonous instability; moreover, its
onset is connected with "isothermal™ perturbations; the axis of ¢ is inter~
sected elther by a real u-level, or by one of the real levels formed by

decomposition” of a complex conjugate palr. It is interesting that although
for a change of the number P in the interval of P under consideration
the spectrum changes form rather radicaelly, the critical value of the Grass-
hof number, which determines the neutral perturbation, varies only slightly.

The author thanks G.E, Gershuni for posing the problem and for help with
the paper. '
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